On the number of response regions of deep feed forward networks with piece-wise linear activations
نویسندگان
چکیده
This paper explores the complexity of deep feedforward networks with linear presynaptic couplings and rectified linear activations. This is a contribution to the growing body of work contrasting the representational power of deep and shallow network architectures. In particular, we offer a framework for comparing deep and shallow models that belong to the family of piecewise linear functions based on computational geometry. We look at a deep rectifier multi-layer perceptron (MLP) with linear outputs units and compare it with a single layer version of the model. In the asymptotic regime, when the number of inputs stays constant, if the shallow model has kn hidden units and n0 inputs, then the number of linear regions is O(k0n0). For a k layer model with n hidden units on each layer it is Ω(bn/n0c n0). The number bn/n0c grows faster than k0 when n tends to infinity or when k tends to infinity and n ≥ 2n0. Additionally, even when k is small, if we restrict n to be 2n0, we can show that a deep model has considerably more linear regions that a shallow one. We consider this as a first step towards understanding the complexity of these models and specifically towards providing suitable mathematical tools for future analysis.
منابع مشابه
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
We present an approach for the verification of feed-forward neural networks in which all nodes have a piece-wise linear activation function. Such networks are often used in deep learning and have been shown to be hard to verify for modern satisfiability modulo theory (SMT) and integer linear programming (ILP) solvers. The starting point of our approach is the addition of a global linear approxi...
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملIdentity Matters in Deep Learning
An emerging design principle in deep learning is that each layer of a deep artificial neural network should be able to easily express the identity transformation. This idea not only motivated various normalization techniques, such as batch normalization, but was also key to the immense success of residual networks. In this work, we put the principle of identity parameterization on a more solid ...
متن کاملLow-Precision Batch-Normalized Activations
Artificial neural networks can be trained with relatively low-precision floating-point and fixed-point arithmetic, using between one and 16 bits. Previous works have focused on relatively wide-but-shallow, feed-forward networks. We introduce a quantization scheme that is compatible with training very deep neural networks. Quantizing the network activations in the middle of each batch-normalizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013